skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Gemma"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Examining the properties of subhaloes with strong gravitational lensing images can shed light on the nature of dark matter. From upcoming large-scale surveys, we expect to discover orders of magnitude more strong lens systems that can be used for subhalo studies. To optimally extract information from a large number of strong lensing images, machine learning provides promising avenues for efficient analysis that is unachievable with traditional analysis methods, but application of machine learning techniques to real observations is still limited. We build upon previous work, which uses a neural likelihood-ratio estimator, to constrain the effective density slopes of subhaloes and demonstrate the feasibility of this method on real strong lensing observations. To do this, we implement significant improvements to the forward simulation pipeline and undertake careful model evaluation using simulated images. Ultimately, we use our trained model to predict the effective subhalo density slope from combining a set of strong lensing images taken by the Hubble Space Telescope. We found the subhalo slope measurement of this set of observations to be steeper than the slope predictions of cold dark matter subhaloes. Our result adds to several previous works that also measured high subhalo slopes in observations. Although a possible explanation for this is that subhaloes with steeper slopes are easier to detect due to selection effects and thus contribute to statistical bias, our result nevertheless points to the need for careful analysis of more strong lensing observations from future surveys.

     
    more » « less
  2. ABSTRACT

    Strong gravitational lensing has emerged as a promising approach for probing dark matter (DM) models on sub-galactic scales. Recent work has proposed the subhalo effective density slope as a more reliable observable than the commonly used subhalo mass function. The subhalo effective density slope is a measurement independent of assumptions about the underlying density profile and can be inferred for individual subhaloes through traditional sampling methods. To go beyond individual subhalo measurements, we leverage recent advances in machine learning and introduce a neural likelihood-ratio estimator to infer an effective density slope for populations of subhaloes. We demonstrate that our method is capable of harnessing the statistical power of multiple subhaloes (within and across multiple images) to distinguish between characteristics of different subhalo populations. The computational efficiency warranted by the neural likelihood-ratio estimator over traditional sampling enables statistical studies of DM perturbers and is particularly useful as we expect an influx of strong lensing systems from upcoming surveys.

     
    more » « less